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Abstract 
In domains where a stochastic process is 
involved in the evaluation of a candidate solu- 
tion, multiple evaluations are necessary to 
obtain a good estimate of the performance of an 
individual. This work shows that biasing the 
sampling of that problem configuration space 
can lead to better performance of the structure 
being learned given the same amount of effort. 

1   Introduction 

In many domains, particularly those where a stochastic 
or noisy evaluation process is involved, the evaluation of 
a candidate solution might require sampling, i.e. multi- 
ple evaluations, to get a good estimate of performance. 
This random sampling over the space of possible 
configurations of the problem environment is typically 
performed with a uniform distribution. In some cases, 
better performance can be achieved by using a non- 
uniform distribution of samples from this problem 
configuration space. Furthermore, instead of randomly 
choosing samples with a fixed distribution, the distribu- 
tion can be altered adoptively over time to achieve a par- 
ticular goal. We call this adaptive sampling of the prob- 
lem configuration space. 

It is important to note that the problem configuration 
space to which we refer is not the same space as the solu- 
tion search space. The solution search space is the 
space that the genetic algorithm searches, i.e. the space 
where crossover and mutation are applied. This is the 
space of candidate solutions. The problem 
configuration space is the space of possible variations in 
the form of the problem being solved. For example, in 
the Evasive Maneuvers (EM) domain,1 several parame- 
ters define the characteristics of the missile we are evad- 
ing and the initial starting conditions of the missile in 
relation to the plane. Each evaluation, from the Genetic 
Algorithm (GA) point of view, requires multiple 
episodes of simulation, where the parameters of the mis- 
siles and starting conditions are randomly chosen each 
time. The performance is the average over these 
episodes. The space of possible parameter settings 
defines the problem configuration space, and adaptive 

sampling biases the distribution of samples from this 
space. The bias2 is adjusted adaptively based on the per- 
formance of the samples seen. In essence, we are adap- 
tively altering the evaluation function to learn a better 
global solution over the problem configuration space. 

Many complex domains require multiple evaluations of 
the candidate solutions to get a good estimate of their 
performance. For example, some domains involve a 
simulation of an environment where the initial 
configuration of the environment is randomly chosen 
each episode (Schultz, 1991; Grefenstette, 1991; Sel- 
fridge, Sutton and Barto, 1985). In other domains, the 
evaluation process itself is noisy due to computational 
constraints. For example, in Fitzpatrick and Grefenstette 
(1988), an image registration process used statistical 
sampling of the image to reduce the computational com- 
plexity of the evaluation. The resulting noisy evaluation 
eliminated the need to examine all pixels in an image. 

These complex domains typically use a uniform distribu- 
tion in randomly selecting each sample from the space of 
problem configurations, in order to gain an accurate esti- 
mate of candidate solutions. What we are interested in is 
having the learning system choose the samples from the 
configuration space non-uniformly to maximize some 
aspect of the learning, e.g., the average performance over 
the entire configuration space. The learner, in this case, 
might be analogous to an active learner in that it chooses 
the specific training environment to maximize its learn- 
ing. 
There are several motivations for wanting to alter the 
selection of samples. In a general sense, we want our 
learning system to acquire knowledge structures that per- 
form as well as possible in the domain of interest. In par- 
ticular, we want the learned knowledge structures to be 
as generally useful as possible, while retaining high per- 
formance. It is well-known that randomly sampling the 
space of initial configurations of a problem yields more 
robust solutions (Sammut and Cribb, 1990). However, if 
this space of configurations is very large with much irre- 
gularity, then it is difficult to adequately sample enough 
of the space. Adaptive sampling tries to include the most 
productive samples so that the amount of sampling of the 
problem configuration space is reduced. Even if the 
space is not too large and has enough regularities to sam- 

1 The EM domain (Erickson and Zytkow, 1988) will be described 
in more detail in the next section. 

Here, we define bias to mean the non-uniform distribution. 



pie adequately, adaptive sampling allows selecting a cri- 
teria over which the samples are chosen. The learned 
knowledge structures can be adapted to a particular use 
by biasing the sampling of the problem configuration 
space. Given an effort equal to uniform sampling, higher 
performance knowledge structures can be produced. 
This last use of adaptive sampling will be demonstrated 
in this study. 
While the GA is sampling the solution space for good 
solutions to the problem, the adaptive sampling mechan- 
ism is sampling the space of possible configurations of 
the problem to be solved, in an effort to maximize what is 
learned by the GA. But what do we mean by "maximiz- 
ing what is learned by the GA?" Depending on the goal, 
we might want to learn something that works as well as 
possible over the entire problem configuration space, or 
we might want a solution that produces a uniform perfor- 
mance over the area, i.e. we might be willing to accept a 
lower mean performance if the same performance is 
achieved at all points in the space. Another goal might 
be to maximize some subarea of the space. 

To measure the above goals, we will use various statis- 
tics, such as the mean of performance over the area, the 
variance of the performance, the maximum or minimum 
of the performance, or the area of the space that achieves 
some level of performance. 
This paper will show that without increasing the effort 
required, a higher performance solution can be found by 
biasing the sampling of the problem configuration space. 
This will be demonstrated empirically with the addition 
of an adaptive sampling mechanism to SAMUEL, a GA- 
based learning system that learns strategies for solving 
sequential decision problems. 

Actively selecting training examples is not a new con- 
cept. In Scott & Markovitch (1989), a conceptual clus- 
tering system used a heuristic to guide the search of 
experience space, such that informative training exam- 
ples could be generated. The heuristic was based on 
Shannon's uncertainty function. Although uncertainty is 
a useful heuristic when trying to maximize what is 
known about a region of the search space, in this study 
we base our biasing on the performance of regions of the 
space. The reason for this is two-fold. First, we assume 
that performance is the only feedback available to us, 
and we want to reduce the amount of explicit bookkeep- 
ing we must perform. Second, as will be shown later, we 
want to affect our sampling in ways that are related to the 
performance of the system. 

Section 2 will identify the problem configuration space 
with respect to the Evasive Maneuvers domain. Section 3 
will describe the adaptive sampling mechanism used in 
these experiments for sampling the configuration space. 
The experimental methodology will be explained in Sec- 
tion 4, and the results presented in Section 5. Finally, 
Section 6 will summarize the experiments and suggest 
better mechanisms for performing the sampling. 

2 The EM Domain and Problem 
Configuration Space 

The Evasive Maneuvers (EM) domain is a two- 
dimensional missile and plane problem where the object 
is for the plane to avoid being hit by the missile. The 
missile is initially much faster than the plane, but the 
plane is slightly more maneuverable. The missile will 
eventually exhaust its fuel and fall from the sky. The use 
of SAMUEL to learn plans for this domain was presented 
in Grefenstette, Ramsey, and Schultz (1990). The empir- 
ical results in this paper use the EM domain. 

In this domain, missiles can have a wide variety of 
characteristics. In particular, the two main attributes for 
missiles are their initial speed and their maneuverability, 
and we have a rough idea of the minimum and maximum 
values for these attributes. Therefore, we will define our 
problem configuration space as a two dimensional space 
where one dimension corresponds to the missile speed, 
and the other dimension corresponds to the missile 
maneuverability. 
Although we can learn high-performance strategies for 
evading specific instances of missiles from this space, we 
also want to learn a single strategy that has relatively 
high performance over as much of the space as possible. 
The system aboard the plane might then use the special- 
ized strategies to defend against specific, known missiles, 
but will also have a general default strategy to use 
between the time a missile is first detected, and the time 
the missile is classified as a particular type. 

Adaptive sampling will allow us to generate a high per- 
formance general strategy over a larger area of the prob- 
lem configuration space. With uniform sampling, it 
would not be possible to learn to perform as well on the 
entire space. 

3 An Adaptive Sampling Mechanism 

This section describes the adaptive sampling mechanism 
in SAMUEL. Please note, however, that the specific 
mechanism used here is only one possible instantiation. 
Other mechanisms are possible, and will be discussed in 
the conclusion. 
Outside the GA, there is a two-dimensional matrix. One 
dimension of the matrix corresponds to the missile speed 
and the other corresponds to the missile maneuverability. 
Each cell of this matrix represents a gross estimate of the 
performance for that combination of missile speed and 
maneuverability over all episodes, over all members of 
the population, and across all generations. The cells are 
initialized with the average possible payoff. This esti- 
mate is updated every episode with the following calcu- 
lation: 

CellValue = CellValue + B(reward - CellValue) 

where B represents a rate of learning, reward is the per-    ^ 
formance from the episode, and CellValue is the current Tt^T 
value of the cell in the matrix being updated. CellValue  s5i_ 
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will converge to the mean payoff for the associated 
configuration. 
The matrix is used each episode to bias the selection of 
the missile characteristics that will be used in that 
episode of the evaluation. Exactly how the matrix is 
used depends on the goal of using adaptive sampling. 
Many disciplines for biasing the distribution may be 
implemented. In this study, two biasing schemes are 
examined: inverse bias, and contour bias. In each case, 
the bias defines a weighting for the distribution of sam- 
ples, and the samples are chosen stochastically based on 
the weighting. 
The first criterion examined for biasing the distribution 
of samples, inverse bias,3 can be stated as follows: 

• Sample more heavily from areas of the space with 
lower performance, but never stop sampling the good 
areas. 

This bias is shown in graphical form in Figure 1, where 
the X-axis is the value from the matrix (i.e., the input to 
the weighting function), and the Y-axis is the weighting 
for the selection of the sample. 

enough and manueverable enough, then no amount of 
learning will allow the aircraft to escape the missile. 
Therefore, it is important to limit the entire configuration 
space to areas known to be learnable. However, this 
might not be possible in practice. This observation was 
the motivation for the next criterion. 

The next criterion used for biasing the distribution, con- 
tour bias,4 can be stated as: 

• Define a parabola shaped weighting around some per- 
formance value so that you sample more in areas that 
are close to that performance level, but never stop 
sampling at a fair rate in areas above that perfor- 
mance, and sample a little in areas below that perfor- 
mance. 

This weighting function is illustrated in Figure 2. 

FIGURE 1: Inverse Bias function. 

The intention here is that heavier sampling of the worst 
performing areas will force the system to "concentrate" 
on improving those areas of the problem configuration 
space. We want to continue to sample from the areas that 
already perform well so that we do not forget what we 
know for that area. One drawback of this approach is the 
underlying assumption that additional training on poor 
performing regions in the configuration space will 
improve the performance in these regions, or that the 
boundaries of the configuration space can be selected 
such that only "learnable" areas are included. If the total 
area of the problem configuration space includes a large 
area that can not be learned because of limited capabili- 
ties of the learning agent, then the overall performance 
will degrade.  In the EM domain, if the missile is fast 

FIGURE 2: Contour Bias function. 

the contour bias technique tends to push the area of at 
least the chosen performance out to cover a greater 
region, but does not suffer the problem of trying to sam- 
ple areas where there is no hope of achieving any 
improvement. An improvement over the last criterion is 
that non-learnable regions are avoided. Whereas the last 
criterion tends to improve the mean performance over 
the entire area, this method is good for expanding the 
region of some given level of performance. This level of 
performance must be specified, and in Figure 2, as well 
as the reported experiments, is set at 90 percent. 

Other disciplines are possible, depending on the objec- 
tive of biasing the sampling. The results of applying 
these two adaptive sampling techniques is presented 
next, along with the results from the baseline (uniform 
distribution) experiment. 

3 So called because the distribution weighting is the inverse of the 
performance. 

4 This name refers to the distribution following a "contour" of a 
given performance level. 



4   Experimental Method 
In order to test the effectiveness of adaptive sampling, 
the following methodology was used. Each experimental 
run is composed of the learning stage, where an optimal 
plan is learned, followed by a testing stage, where that 
plan is evaluated. 

TABLE 1: Statistics for uniform and adaptive sampling. 

uniform inverse contour 

mean 86.86 91.17 92.13 

variance 189.21 119.01 139.70 

minimum 20.29 25.29 24.90 

maximum 99.40 99.59 100.00 

area above 95% 33% 51% 65% 

area above 98% 13% 16% 35% 

area above 99% 2% 2% 18% 

During the learning phase, the adaptive sampling 
mechanism is enabled using one of the biases for choos- 
ing the samples from the problem configuration space. 
After 100 generations, the best plan is retrieved. In the 
testing phase, this best plan is subjected to extended 

evaluations on 256 combinations of values for the two 
parameters that define the problem configuration space 
(i.e. each parameter is divided into 16 values). The per- 
formance is presented as a contour plot where the x-axis 
is the missile speed and the y-axis is the maximum mis- 
sile turning rate (maneuverability). The contours 
represent the level of performance with a given combina- 
tion of speed and turning rate. 

For comparative purposes, a baseline experiment was 
performed without adaptive sampling. In this experi- 
ment, random sampling with uniform distribution was 
performed over the problem configuration space. This 
would be equivalent to performing a Monte Carlo sam- 
pling of the space. The best plan from this experiment 
was again tested over the combination of values for the 
two parameters as described above. 

In addition to the contour plots, which give a visual pic- 
ture of the performance of the plan over the problem 
configuration space, various statistics can quantify the 
overall effect, as discussed earlier. For each experiment, 
we measure the mean performance over the space, the 
variance of the performance, the maximum and 
minimum performance, and the percentage of the area of 
the space where the performance was greater than or 
equal to 95, 98 and 99 percent. Table 1 summarizes the 
results for the baseline case of uniform distribution and 
for the two non-uniform distributions, inverse bias and 
contour bias. 
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FIGURE 3: Baseline performance using uniform distribution. 



5   Results 
The results of the baseline experiment are shown in 
Table 1, under the heading uniform, and in Figure 3. 
Here we can see the effect of training over the entire 
problem configuration space using a uniform distribution 
of samples during the training. The results for the first 
adaptive sampling discipline, inverse bias, are shown in 
Table 1, under the heading inverse, and in Figure 4. 
These show the effect of sampling more where the per- 
formance of the samples is lower. The results from the 
second adaptive sampling discipline, contour bias, are 
shown in Table 1, under the heading contour, and in Fig- 
ure 5. The results of biasing the samples towards a par- 
ticular performance to expand its region is shown. 

By comparing the columns in Table 1 and examining the 
three figures, the advantage of biasing the sampling 
becomes clear. The uniform sampling, as seen in Figure 
3, only has acceptable performance on a small portion of 
the space. The inverse bias, by definition, strives to get a 
uniformly good performance over the entire area by con- 
centrating on those areas where performance is lower. 
We can see from Figure 4 that the area of good perfor- 
mance is much larger. From the statistics, we see that the 
mean performance is better than in the uniform sampling 
case, and in particular, the variance in performance over 
the area is much lower. Also, the minimum performance 
in the area has risen significantly. 

This indicates that the strategy learned is more robust 
and generally applicable to more of the situations it 
might encounter within the problem configuration space. 
Notice, however, that the performance at 98 percent and 
above did not increase significantly. Suppose that 
instead of wanting a strategy that performed relatively 
well, where the emphasis was on uniformity over the 
space, we wanted to emphasize a higher performance 
strategy, and find out how much of the space we could 
get it to cover. 

With the contour bias, the emphasis is on making the 
area of very high performance as large as possible. This 
is achieved by concentrating on the area around a given, 
relatively high performance. This area should then 
"grow" to cover more area. In the table, we can see that 
the areas of very high performance are much greater 
when using the contour bias. In particular, the area with 
a performance greater than or equal to 98 percent has 
nearly tripled, while the area above 99% has increased 
by almost a factor of ten. A side effect, however, is that 
the variance is higher than in the inverse bias case. This 
is to be expected, since inverse bias strives for unifor- 
mity, while the contour bias attempts to enlarge the area 
of good performance, sometimes at the expense of other 
areas of the space. Note, however, that the variance is 
still better than when not using adaptive sampling at all. 
This bias also gave the highest maximum performance. 
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FIGURE 4: Performance using inverse bias. 
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FIGURE 5: Performance using contour bias. 

6   Conclusion 
The empirical evidence presented in this paper shows 
that biasing the sampling of the problem configuration 
space can improve the overall performance (along some 
dimension) of the knowledge structures learned in prob- 
lems involving stochastic evaluations. In the EM 
domain, the adaptive sampling is successfully used to 
generate a strategies with specific properties that are use- 
ful for a wide variety of opponents, by biasing the sam- 
pling of the space of opponents. 

Future research will examine adaptive sampling in other 
domains, including domains where the motivation of 
reduced effort in sampling can be tested. Also, we would 
like to examine and characterize other biasing discip- 
lines. 

This paper's intention is to demonstrate the idea of adap- 
tive sampling. The method used here (a two dimensional 
matrix) will not scale up if the problem configuration 
space is more than a few dimensions. In fact, the natural 
choice for the mechanism for adaptive sampling is a 
genetic algorithm, since it embodies the notion of impli- 
cit statistics without explicit bookkeeping. Therefore, 
another direction for further research is to develop adap- 
tive sampling as a meta or cooperative genetic algorithm. 
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